「SHolroydAtWeilCornellMedQatar/Urology/Kidney/Tubules/WaterReabsorption/ControlToSweating」の版間の差分

提供:一歩一歩
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
1行目: 1行目:
{{Point|With sweating, the plasma osmolarity increases and negative feedback increases the synthesis, secretion, and blood concentration of vasopressin (anti-diuretic hormone, ADH).}}
{{Point|With sweating the plasma osmolarity increases, negative feedback increases the water reabsorption. 発汗により血漿浸透圧が上昇すると、負のフィードバックは、尿細管からの水分再吸収を増加させる。}}
<!--
<!--
[[メディア:WaterReabsorptionSweatingControl-Eng.mp4|narrated video explanation]]
[[メディア:WaterReabsorptionSweatingControl-Eng.mp4|narrated video explanation]]
8行目: 8行目:
[[メディア:WaterReabsorptionBaseLine-Eng.mp4|video prior to sweating]]<br>
[[メディア:WaterReabsorptionBaseLine-Eng.mp4|video prior to sweating]]<br>
-->
-->
Prior to sweating (at baseline), we will make the assumption that the subject is in homeostasis with normal plasma and urine osmolarities (isotonic) and volumes.
Before sweating (at baseline), we will make the assumption that the subject is in homeostasis with adequate strength of the plasma osmolarity-decreasing effect of reabsorption as well as normal plasma and urine osmolarities (isotonic) and urine volume.発汗前(ベースライン)では恒常性が保たれていて、水分再吸収の血漿浸透圧低下作用は適度な強さであり、血漿浸透圧と尿浸透圧は正常(等張)、尿量も正常であるとしましょう。
<br style="clear:both;" />  
<br style="clear:both;" />  
</div>
</div>
17行目: 17行目:
[[メディア:WaterReabsorptionSweating2-Eng.mp4|video just after sweating]]<br>
[[メディア:WaterReabsorptionSweating2-Eng.mp4|video just after sweating]]<br>
-->
-->
Step 1: With sweating, water leaves the plasma and osmolarity increases (the plasma becomes hypertonic).<br>
Step 1: With sweating, water leaves the plasma and osmolarity increases (concentrated, hypertonic). <br>
<br>
<br>
Step 2: With reabsorption (through the water channels, which are increased by vasopressin, ADH), water enters the plasma and osmolarity decreases. This is the opposite effect of sweating. Thus, with the high plasma osmolarity produced by sweating (hypertonic plasma), the baseline strength of the plasma osmolarity-decreasing effect of reabsorption would be too weak. Control by negative feedback is needed.  
Step 2: This is in the opposite direction to the plasma osmolarity-decreasing effect of the reabsorption. Thus, although the strength of the plasma osmolarity-decreasing effect of reabsorption (through the water channels, which are increased by vasopressin, ADH) was adequate before sweating (at baseline), this strength is now <font color="#00f">too weak (blue)</font> to reverse the increased plasma osmolarity (concentrated, hypertonic) produced by sweating. Control by negative feedback is needed. 図の①:発汗により水分が血漿から出るため、血漿浸透圧が上昇し(濃く、高張になり)ます。<br>
図の②:これは、水分再吸収の血漿浸透圧低下作用と逆の方向です。そのため、水分再吸収の血漿浸透圧低下作用の強さは、発汗前(ベースライン)では適度でしたが、発汗により上昇した(濃く、高張になった)血漿浸透圧を戻すためにはその強さでは<font color="#00f">不足(青)</font>となります。負のフィードバックによる調節が必要です。
<br style="clear:both;" />
<br style="clear:both;" />
</div>
</div>
33行目: 34行目:
[[メディア:WaterReabsorptionSweating4-Eng.mp4|video just after the increase in vasopressin (ADH) caused by sweating]]<br>
[[メディア:WaterReabsorptionSweating4-Eng.mp4|video just after the increase in vasopressin (ADH) caused by sweating]]<br>
-->
-->
Step 3: With the baseline effect of the reabsorption (through the water channels, which are increased by vasopressin, ADH) being too weak, the negative feedback increases the synthesis, secretion, and blood concentration of vasopressin (ADH).<br>
Step 3: With the strength of the plasma osmolarity-decreasing effect of the reabsorption   before sweating (at baseline) being <font color="#00f">too weak (blue)</font>, the negative feedback <font color="#ff0000">increases (red)</font> the reabsorption of water .図の③:水分再吸収の血漿浸透圧低下作用が発汗前(ベースライン)の強さでは<font color="#00f">不足(青)</font>なので、負のフィードバックが水分再吸収を<font color="#ff0000">増加(赤)</font>させます。<br>
<br>
Step 4: The water channel-increasing effect of vasopressin (ADH) increases, thereby increasing the number of water channels. This increases the reabsorption of water by the kidney.
<br style="clear:both;" />   
<br style="clear:both;" />   


43行目: 42行目:
[[メディア:WaterReabsorptionSweating5-Eng.mp4|video showing the changes in plasma and urine after the increase in vasopressin (ADH) caused by sweating]]<br>
[[メディア:WaterReabsorptionSweating5-Eng.mp4|video showing the changes in plasma and urine after the increase in vasopressin (ADH) caused by sweating]]<br>
-->
-->
Step 5: The ratio of Na<sup>+</sup> to water entering the plasma due to reabsorption decreases. This decreases plasma osmolarity. This will lead to a decrease in the increased plasma osmolarity from sweating (hypertonic plasma), returning it towards normal (baseline) osmolarity (isotonic plasma). Because a lower ratio of Na<sup>+</sup> to water leaves the tubule due to reabsorption, the fluid remaining in the tubule has a higher osmolarity (hypertonic). Also, with an increase in water reabsorption, there is less water remaining in the tubule. Overall, the urine becomes more concentrated (hypertonic) and lower in volume.
Step 4: With the increase in water reabsorption, diluted (hypotonic) solution enters the plasma. This will lead to a reverse in the increased plasma osmolarity (concentrated, hypertonic) produced by sweating, decreasing it towards normal (baseline, isotonic) osmolarity. Because diluted (hypotonic) solution leaves the tubule due to reabsorption, the fluid remaining in the tubule has increased osmolarity (concentrated, hypertonic). Also, with the increase in water reabsorption, there is less water remaining in the tubule. Overall, the urine becomes concentrated and decreases in volume.図の④:水分再吸収が増加し、薄い溶液(低張液)が血漿に入ります。発汗により上昇した(濃く、高張になった)血漿浸透圧は、発汗前の正常な(ベースラインの)浸透圧(等張)へ向けて低下します。<br>
再吸収で薄い溶液(低張液)が尿細管から出るため、残る液の浸透圧は上昇し(濃く、高張になり)ます。水分再吸収も増加するため、尿細管に残る水分は減少します。つまり尿は濃く、少量になります。
<br style="clear:both;" />
<br style="clear:both;" />
</div>
</div>
51行目: 51行目:
//LEVEL:2  
//LEVEL:2  
//RAND  
//RAND  
With sweating, negative feedback {~=increases~decreases}  the synthesis, secretion, and blood concentration of  vasopressin (anti-diuretic hormone, ADH).
With sweating the plasma osmolarity increases, negative feedback {~=increases~decreases}  the water reabsorption. 発汗により血漿浸透圧が上昇すると、負のフィードバックは、尿細管からの水分再吸収を {~=増加~減少} させる。
 
//LEVEL:3
//RAND
With sweating, negative feedback {~=increases~decreases}  the number of water channels in the kidney.
 
//LEVEL:2
//RAND
With sweating, negative feedback {~=increases~decreases}  water reabsorption by the kidney.
 
//LEVEL:3
//RAND
With sweating, negative feedback {increases~=decreases}  urine volume.
 
//LEVEL:3
//RAND
With sweating, negative feedback {~=increases~decreases} urine osmolarity.
 
//LEVEL:3
//RAND
With sweating, negative feedback {increases~=decreases}  plasma osmolarity.


//LEVEL:3
//LEVEL:4
//RAND  
//RAND  
With sweating, the plasma osmolarity {decreases~=increases}. The effect would be the {=same as~opposite to} that of reabsorption of water by the kidney, which {=decreases~increases} plasma osmolarity.  The effect of the reabsorption would be {=too weak~too strong} prior to control by negative feedback. Negative feedback {~=increases~decreases} the synthesis, secretion, and blood concentration of vasopressin (anti-diuretic hormone, ADH).  This in turn {~=increases~decreases} the number of water channels in the kidney causing {~=increased~decreased} water reabsorption. Urine osmolarity {~=increases~decreases} while volume {increases~=decreases}.  This {~=decreases~increases} plasma osmolarity, {~=returning to normal~separating from normal}.
With sweating, the plasma osmolarity {~=increases~decreases}. This is in the {~same direction as~=opposite direction to} the plasma {~osmolarity-increasing~=osmolarity-decreasing} effect of the reabsorption from the tubule. The negative feedback {~=increases~decreases} the water reabsoption from the tubule. Overall, the urine volume {~increases~=decreases}, and urine osmolarity {~increases~=decreases}. This will lead to plasma osmolarity {~increasing ~=decreasing} it towards normal (baseline) osmolarity. 発汗により血漿浸透圧は {=上昇~低下}する。これは、腎臓/尿細管からの水分再吸収の血漿浸透圧{~上昇~=低下}作用と {~同じ~=逆の}方向であり、負のフィードバックは尿細管からの水分再吸収を {=増加~減少}させる。これは尿量を {~増加~=減少}させ、尿浸透圧を {=上昇~低下}させ、血漿浸透圧を(等張へ向けて) {~上昇~=低下}させる。
</GIFT>
</GIFT>

2020年3月15日 (日) 20:00時点における版

POINT!
WaterReabsorptionBaseLine-Eng.jpg

Before sweating (at baseline), we will make the assumption that the subject is in homeostasis with adequate strength of the plasma osmolarity-decreasing effect of reabsorption as well as normal plasma and urine osmolarities (isotonic) and urine volume.発汗前(ベースライン)では恒常性が保たれていて、水分再吸収の血漿浸透圧低下作用は適度な強さであり、血漿浸透圧と尿浸透圧は正常(等張)、尿量も正常であるとしましょう。

WaterReabsorptionSweating2-Eng.jpg

Step 1: With sweating, water leaves the plasma and osmolarity increases (concentrated, hypertonic).

Step 2: This is in the opposite direction to the plasma osmolarity-decreasing effect of the reabsorption. Thus, although the strength of the plasma osmolarity-decreasing effect of reabsorption (through the water channels, which are increased by vasopressin, ADH) was adequate before sweating (at baseline), this strength is now too weak (blue) to reverse the increased plasma osmolarity (concentrated, hypertonic) produced by sweating. Control by negative feedback is needed. 図の①:発汗により水分が血漿から出るため、血漿浸透圧が上昇し(濃く、高張になり)ます。
図の②:これは、水分再吸収の血漿浸透圧低下作用と逆の方向です。そのため、水分再吸収の血漿浸透圧低下作用の強さは、発汗前(ベースライン)では適度でしたが、発汗により上昇した(濃く、高張になった)血漿浸透圧を戻すためにはその強さでは不足(青)となります。負のフィードバックによる調節が必要です。





WaterReabsorptionSweating4-Eng.jpg

Step 3: With the strength of the plasma osmolarity-decreasing effect of the reabsorption before sweating (at baseline) being too weak (blue), the negative feedback increases (red) the reabsorption of water .図の③:水分再吸収の血漿浸透圧低下作用が発汗前(ベースライン)の強さでは不足(青)なので、負のフィードバックが水分再吸収を増加(赤)させます。

WaterReabsorptionSweating5-Eng.jpg

Step 4: With the increase in water reabsorption, diluted (hypotonic) solution enters the plasma. This will lead to a reverse in the increased plasma osmolarity (concentrated, hypertonic) produced by sweating, decreasing it towards normal (baseline, isotonic) osmolarity. Because diluted (hypotonic) solution leaves the tubule due to reabsorption, the fluid remaining in the tubule has increased osmolarity (concentrated, hypertonic). Also, with the increase in water reabsorption, there is less water remaining in the tubule. Overall, the urine becomes concentrated and decreases in volume.図の④:水分再吸収が増加し、薄い溶液(低張液)が血漿に入ります。発汗により上昇した(濃く、高張になった)血漿浸透圧は、発汗前の正常な(ベースラインの)浸透圧(等張)へ向けて低下します。
再吸収で薄い溶液(低張液)が尿細管から出るため、残る液の浸透圧は上昇し(濃く、高張になり)ます。水分再吸収も増加するため、尿細管に残る水分は減少します。つまり尿は濃く、少量になります。

Challenge Quiz

1.

With sweating the plasma osmolarity increases, negative feedback increases decreases the water reabsorption. 発汗により血漿浸透圧が上昇すると、負のフィードバックは、尿細管からの水分再吸収を  増加 減少 させる。

2.

With sweating, the plasma osmolarity increases decreases . This is in the same direction as opposite direction to the plasma osmolarity-increasing osmolarity-decreasing effect of the reabsorption from the tubule. The negative feedback increases decreases the water reabsoption from the tubule. Overall, the urine volume increases decreases , and urine osmolarity increases decreases . This will lead to plasma osmolarity increasing decreasing it towards normal (baseline) osmolarity. 発汗により血漿浸透圧は  上昇 低下 する。これは、腎臓/尿細管からの水分再吸収の血漿浸透圧 上昇 低下 作用と  同じ 逆の 方向であり、負のフィードバックは尿細管からの水分再吸収を  増加 減少 させる。これは尿量を  増加 減少 させ、尿浸透圧を  上昇 低下 させ、血漿浸透圧を(等張へ向けて)  上昇 低下 させる。